Sri Krishna Institute of Technology, Bangalore

COURSE PLAN
Academic Year 2019-2020

Program:	B E - Civil engineering
Semester:	2
Course Code:	18 CIV 24
Course Title:	Elements of Civil Engineering and Mechanics
Credit / L-T-P:	$3 / 3-0-0$
Total Contact Hours:	40
Course Plan Author:	RAMYA B/YESHASHWINI R V/ SHIVASHANKAR R

Academic Evaluation and Monitoring Cell

Sri Krishna Institute of Technology
\#29, Chimney hills,Hesaraghata Main road, Chikkabanavara Post
Bangalore - 560090, Karnataka, INDIA
Phone / Fax :08023721477/28392221/23721315
Web: www.skit.org.in , e-mail: skitprinci@gmail.com

Table of Contents

A. COURSE INFORMATION 3

1. Course Overview 3
2. Course Content. 3
3. Course Material 4
4. Course Prerequisites. 5
5. Content for Placement, Profession, HE and GATE 5
B. OBE PARAMETERS 5
6. Course Outcomes. 5
7. Course Applications 6
8. Articulation Matrix 6
9. Curricular Gap and Content 6
C. COURSE ASSESSMENT.7
10. Course Coverage 7
11. Continuous Internal Assessment (CIA)7
D1. TEACHING PLAN - 1 7
Module - 1 7
Module - 2. 8
E1. CIA EXAM - 1 9
a. Model Question Paper - 1 9
b. Assignment -1 10
D2. TEACHING PLAN - 2 11
Module-3. 11
Module - 4 12
E2. CIA EXAM - 2 13
a. Model Question Paper - 2 13
b. Assignment - 2 13
D3. TEACHING PLAN - 3 14
Module - 5. 14
E3. CIA EXAM - 3 15
a. Model Question Paper - 3 15
b. Assignment - 3 15
F. EXAM PREPARATION. 16
12. University Model Question Paper. 16
13. SEE Important Questions 17
Course Outcome Computation. 19
Academic Year: 19
Odd / Even semester 19

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	CIVIL
Semester:	$2019 / 1$ st	Academic Year:	$2019-20$
Course Title:	Elements of civil engineering and mechanics	Course Code:	$18 \mathrm{CIV14}$
Credit / L-T-P:	03	SEE Duration:	180 Minutes
Total Contact Hours:	40	SEE Marks:	60 Marks
CIA Marks:	40	Assignment	$1 /$ Module
Course Plan Author:	RAMYA B/YESHASHWINI R V/ SHIVASHANKAR R	Sign ..	Dt:
Checked By:		Sign ..	Dt:
CO Targets	BE	SEE Target:	CIVIL

Note: Define CIA and SEE \% targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute.

$\begin{array}{\|c\|} \hline \text { Mod } \\ \text { ule } \end{array}$	Content	Teaching Hours	Blooms Learning Levels
	Introduction to Civil Engineering Scope of different fields of Civil Engineering - Surveying, Building Materials, Construction Technology, Geotechnical Engineering, Structural Engineering, Hydraulics, WaterResources and Irrigation Engineering, Transportation Engineering, Environmental Engineering.1Infrastructure: Types of infrastructure, Role of Civil Engineer in thelnfrastructural Development, Effect of the infrastructural facilities onsocioeconomic development of a country. Introduction to Engineering Mechanics: Basic idealizations Particle, Continuum and Rigid body; Newton's lawsBForce and its characteristics, types of forces-Gravity, Lateral and its distribution on surfaces, Classification of force systems, Principle of physical independence, superposition. transmissibility of forces, , Introduction to SI units.Couple, Moment of a couple, Characteristics of couple, Moment of a force, Equivalent force - Couple system; Numerical problems on moment of forces and couples, on equivalent force couple system.	8	L3
2	Concepts: Resultants and Equilibrium Composition of forces - Definition of Resultant; Composition of coplanar -concurrent force system, Parallelogram Law of forces, Principle of resolved parts; Numerical problems on composition of coplanar concurrent force systems. Equilibrium of forces - Definition of Equilibrant; Conditions of static equilibrium for different force systems, Lami's theorem; Numerical problems on equilibrium of coplanar - concurrent and non-concurrent force systems.Application- Static Friction in rigid bodies in contact Types of friction, Laws of static friction, Limiting friction, Angle of friction, angle of repose; Impending motion on horizontal and inclined planes;Numerical Problems on single and two blocks on inclined planes	8	L3
3	Support Reaction in beams Types of Loads and Supports, statically determinate beams, Numerical problems onsupport reactions for statically determinate beams with Point load (Normal and inclined) and uniformly distributed	8	L3

	and uniformly varying loads and Moments. Types of trusses, analysis of statically determinate trusses using method of joints and method of section		
4Introduction to the concept, centroid of line and area, centroid of basic geometrical figures, computing centroid for-T, L, I, Z and full/quadrant circular sections and their built up sections. Numerical problems Introduction to the concept. Radius of gyration, Parallel axis theorem, Perpendicular axis theorem, Moment of Inertia of basic planar figures, computing moment of Inertia for - T, L, I, Z and full/quadrant circular sections and their built up sections. Numerical problems	8	L3	
5Concets and Applications Definition - Displacement - Average velocity - Instantaneous velocity - Speed	8		
Acceleration - Average acceleration - Variable acceleration			
Acceleration due to gravity - Newton's Laws of Motion. A' Alembert's principle and its application in plane motion and connected bodies including pulleys	L3		
- Total			

3. Course Material

Books \& other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15-30 minutes
2. Design: Simulation and design tools used - software tools used ; Free / open source
3. Research: Recent developments on the concepts - publications in journals; conferences etc.

Modul es	Details	Chapters in book	Availability
A	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
$\begin{gathered} 1,2,3 \\ 4,5 \end{gathered}$	Elements of civil engineering and mechanics by M.N.Shesha Prakash and Ganesh, $3^{\text {rd }}$ Revised edition	3. 4	In Lib / In Dept
1,2,3,4	Elements of civil engineering and mechanics by S,S, Bhavikatti, New Age Internqtional Publisher,New Delhi,4th edition	2, 4	In Lib/ In dept
B	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1, 2	Engineering Mechanics by D.H.Young and J.V.Rao,TATA McGraw Hill Book Company,New Delhi	2,4	Not Available
$3,4,5$	Elements of civil engineering and mechanics by S,S, Bhavikatti, New Age Internqtional Publisher,New Delhi,4th edition		
C	Concept Videos or Simulation for Understanding	-	-
C1			
C2			
C3			
C4			
C5			
D	Software Tools for Design	-	-
E	Recent Developments for Research	-	-
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1			

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B. 5 .
Students must have learnt the following Courses / Topics with described Content..

Mod ules	Course Code	Course Name	Topic / Description	Sem	Remarks	Blooms Level
1	18 CIV14	Elements of1.Knowledge of Mathematics civil engineering and mechanics	1		L3	

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry \& profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.
Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod ules	Topic / Description	Area	Remarks	Blooms Level

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs.

Mod ules	Course Code.\#	Course Outcome At the end of the course, student should be able to ...	Teach. Hours	Instr Method	$\begin{array}{\|c\|} \hline \text { Assessme } \\ \text { nt } \\ \text { Method } \end{array}$	Blooms' Level
1	18CIV14.1	Students should be able to describe the scope of various fields of civil engineering	${ }^{2}$	Scope of civil engineering	BB,ppt	C.I.E.Unit test,Assign ment
1	18CIV14.2	Students should be able to illustrate forces on couple system and moment of forces	6	Resolution of Forces	BB	C.I.E.Unit test,Assign ment
2	18CIV14.3	Students should be able to Calculate the resultant of force system subjected to various load	4	Resultant of Concurrent forces	BB,Tutoria	C.I.E,Unit test,Assign ment
2	18CIV14.4	Students should be able to Apply laws of friction and types of friction	3	Friction and Equilibrium	BB	C.I.E,Unit test,Assign ment
3	18CIV14.5	Students should be able to compute the reactive force that develop as result of external load	3	Resolving of Support Reaction	$\underset{l}{\text { ABB,Tutoria }}$	C.I.E,Unit test,Assign ment
3	18CIV14.6	Students should be able to calculate the trusses by method of joints and section	5	$\begin{array}{ll} \hline \begin{array}{l} \text { Analysis } \\ \text { trusses } \end{array} & \text { of } \\ \hline \end{array}$	BB	C.I.E,Unit test,Assign ment
4	18CIV14.7	Students should be able to determine centroid of built up section	4	Location of Centroid	$\underset{l}{f \mathrm{fBB}, \text { Tutoria }}$	C.I.E.Unit test,Assign ment
4	18CIV14.8	Students should be able to calculate M.I of full/quadrant circular section	4	Determination of Moment of Inertia	fi, Tutoria	C.I.E,Unit test,Assign ment
5	18CIV14.9	Students should be able to	6	kinematics	BB	C.I.E,Unit

COURSE PLAN - CAY 2019-20

	illustrate relationship between motion of bodies			test,Assign ment		
5	$18 \mathrm{CIV14.10}$	Students should be able to describe relationship between plane motion and connected bodies	2	kinetics	BB	C.I.E,Unit test,Assign ment
-	-	Total	$\mathbf{5 0}$	-	-	L2-L4

2. Course Applications

Write 1 or 2 applications per CO.
Students should be able to employ / apply the course learnings to .

Mod ules	Application Area Compiled from Module Applications.	CO	Level
1	Basic fields of civil engineering, Force system and resolution of forces	CO 1	L 2
2	Equilibrium forces and friction in rigid body	CO 2	L 3
3	Support reaction and forces acting on trusses	CO 3	L 3
4	Centroid and moment of inertia	CO 4	L 3
5	Concept of kinematics and kinetics	CO 5	L 3

3. Articulation Matrix

CO - PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes	Program Outcomes															$\begin{array}{\|c\|} \hline- \\ \hline \text { Lev } \\ \text { el } \\ \hline \end{array}$	
Mod ules	CO.\#	At the end of the course student should be able to . .	$\begin{gathered} \mathrm{PO} \\ 1 \end{gathered}$	$\begin{array}{l\|l} \hline \mathrm{O} & \mathrm{PO} \\ 2 & 3 \\ \hline \end{array}$		$\begin{array}{\|c\|c\|} \hline \mathrm{PO} \\ 4 \end{array}$	$\begin{gathered} \mathrm{PO} \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ 6 \end{gathered}$	$\left\lvert\, \begin{array}{c\|} \hline \mathrm{PO} \\ 7 \end{array}\right.$	$\begin{array}{\|c\|} \hline \mathrm{PO} \\ 8 \\ \hline \end{array}$	\mid	$\begin{aligned} & \mathrm{PO} \\ & 10 \end{aligned}$	$\begin{array}{\|c\|c\|} \hline \mathrm{PO} \\ 11 & \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \mathrm{PO} \\ 12 & \mathrm{C} \\ \hline \end{array}$	$\begin{array}{l\|l} \hline \mathrm{PS} & \mathrm{P} \\ \mathrm{O} & \mathrm{O} \\ \hline \end{array}$		$\begin{array}{l\|l} \hline & P S \\ 2 & \mathrm{OS} \\ \hline 2 \end{array}$		
1																			
2																			
3																			
4																			
5																			
-	15EE662.	Average																	
-	PO, PSO	1.Engineering Knowledge; 2.Prob 4. Conduct Investigations of Comp Society; 7.Environment and 10.Communication; 11.Project S1.Software Engineering; S2.Data	lem lex usta Man Base	$A r$ Prok ainal		ysis, ms; ty; nt agem	$\begin{array}{r} 3 . D \\ \text { 5.M } \\ 8 . E t \\ a n \\ \text { ment } \end{array}$	Des Mode Ethic and nt: S	$\begin{aligned} & \text { ign } \\ & \text { ern } 7 \\ & \text { cs; } \\ & \text { Fin } \\ & \text { 3.We } \end{aligned}$		ev		$\begin{aligned} & \text { pm } \\ & \text { e; } 6 . \end{aligned}$	$i t$	$\begin{aligned} & \text { of } \\ & \text { En } \\ & \text { en } \\ & \text { ong } \end{aligned}$	$\begin{aligned} & \text { Igin } \\ & \text { Ted } \end{aligned}$		ions; and work; ning;	

4. Curricular Gap and Content

Topics \& contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod ules	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1		Seminar	$2^{\text {nd }}$ week / date	Dr XYZ, Inst	List from B4 above
2		Seminar	$3^{\text {rd }}$ Week		

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation.

Mod ules	Title				Teach. Hours	No. of question in Exam						CO	Levels	
					CIA-1	CIA-2	CIA-3	Asg	Extra Asg	SEE				
1	Introduction	to	Civil	Engineering		8	2	-	-	1	1	2	CO 1	L2,L3

	\&Engineering Mechanics									
2	Analysis of Concurrent Force Systems	8	2	-	-	1	1	2	CO 2	L 3
3	Analysis of Non-Concurrent Force Systems	8	-	2	-	1	1	2	CO 3	L 3
4	Centroids and Moments of Inertia of Engineering Sections:	8	-	2	-	1	1	2	CO 4	L 3
5	Kinematics and Kinetics	8	-	-	4	1	1	2	CO 5	L 3
-	Total	$\mathbf{5 0}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{1 0}$	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A. 2.

Mod ules	Evaluation	Weightage in Marks	CO	Levels
1, 2	CIA Exam - 1	30	CO1, CO2, CO3, CO_{4}	L2,L3,L4
3, 4	CIA Exam - 2	30	CO 5	
5	CIA Exam - 3	30		
1,2	Assignment - 1	10	$\mathrm{CO} 1, \mathrm{CO} 2, \mathrm{CO} 3, \mathrm{CO} 4$	L2,L3,L4
3, 4	Assignment-2	10	CO 5	
5 A	Assignment-3	10		
1,2	Seminar - 1		-	-
3, 4	Seminar - 2		-	-
5	Seminar - 3		-	-
1,2	Quiz - 1		-	-
3,4	Quiz - 2		-	-
5	Quiz - 3		-	-
1-5	Other Activities - Mini Project	-	$\mathrm{CO}_{4}, \mathrm{CO} 5$	L2
	Final CIA Marks		-	-

D1. TEACHING PLAN - 1

Module - 1

Title:		Appr Time:	10 Hrs
\mathbf{a}	Course Outcomes	CO	Blooms
1	The student should be able to:		
2	describe the scope of various fields of civil engineering	$\mathrm{CO1}$	L 2
$\mathbf{i l l u s t r a t e ~ f o r c e s ~ o n ~ c o u p l e ~ s y s t e m ~ a n d ~ m o m e n t ~ o f ~ f o r c e s ~}$	$\mathrm{CO1}$	L 3	
\mathbf{b}	Course Schedule		
Class No	Portion covered per hour	-	-
1	Introduction to Civil Engineering Scope of different fields of Civil Engineering - Surveying, Building Materials, Construction Technology, Geotechnical Engineering, Structural Engineering, Hydraulics, WaterResources and Irrigation Engineering, Transportation Engineering, Environmental Engineering.	CO1	-
2	Infrastructure: Types of infrastructure, Role of Civil Engineer in thelnfrastructural Development, Effect of the infrastructural facilities onsocio- economic development of a country.	CO1	
3	Introduction to Engineering Mechanics: Basic idealizations - Particle, Continuum and Rigid body; Newton's lawsBForce and its characteristics, types of forces-Gravity, Lateral and its distribution on surfaces,		
4	Classification of force systems, Principle of physical independence,	CO1	

	superposition, transmissibility of forces, , Introduction to SI units		
5	Couple, Moment of a couple, Characteristics of couple, Moment of a force, Equivalent force - Couple system	CO1	
6	Numerical problems on moment of forces and couples, on equivalent force couple system.	CO1	
7	Numerical problems on moment of forces and couples, on equivalent force couple system.	CO1	
8	Numerical problems on moment of forces and couples, on equivalent force couple system.	CO1	
C	Application Areas		
-	Students should be able employ / apply the Module learnings to .		
1	Basic fields of civil engineering	CO1	L3
2	Resolve the forces acting on body	CO1	L3
d	Review Questions		
-			
1	Discuss briefly the role of Civil Engineers in the infrastructure development of a country	CO1	L1
2	Differentiate between flexible and rigid pavement	CO 1	L3
3	Bring out briefly scope of following specialization of civil engineering i) Environmental Engineering ii) Geotechnical Engineering	CO1	L2
4	Explain briefly the classification of roads.	CO1	L4
5	Define force. Explain the classification of force system	CO1	L2
6	Explain i)Principle of transmissibility of forces. ii) Principle of physical independence of forces	CO1	L5
7	Define couple. Explain characteristics of couple	CO1	L2
8	Bring out briefly scope of following specialization of civil engineering i) Structural Engineering i) Transportation Engineering	CO1	L3
9	A force of 630 N is acting on a block as shown in the fig-1. Find the i)Horizontal \& vertical components ii)Inclined to the plane and right angles to the plane	CO1	L4
10	Replace 1000 N force at point A , which is acting at point B as shown in the fig2. Also find the moment at A.	CO1	L1
11	A square $A B C D$ as forces acting at along its sides as shown in the fig-3. Find the value of P \& Q, if the system reduces the couple. Also find the magnitude of the couple.	CO1	L4
e	Experiences	-	-
1		CO1	L2
2			

Module - 2

Title:		Appr Time:	10 Hrs
\mathbf{a}	Course Outcomes	CO	Blooms
-	The student should be able to:	-	Level
1	Calculate the resultant of force system subjected to various load	CO 2	L 3
2	Apply laws of friction and types of friction	CO 2	L 3
	Course Schedule	-	-
\mathbf{b}	Class No	Portion covered per hour	-
9	Resultants and Equilibrium Composition of forces Composition of coplanar -concurrent force system,	Definition of Resultant;	CO 2
10	Parallelogram Law of forces, Principle of resolved parts; Numerical problems on composition of coplanar concurrent force systems.	CO 2	L 3

11	Equilibrium of forces - Definition of Equilibrant; Conditions of static equilibrium for different force systems, Lami's theorem	CO 2	L3
12	Numerical problems on equilibrium of coplanar - concurrent and nonconcurrent force systems	CO 2	L3
13	Application- Static Friction in rigid bodies in contact Types of friction, Laws of static friction,	CO 2	L3
14	Limiting friction, Angle of friction, angle of repose; Impending motion on horizontal and inclined planes	CO 2	L3
15	Numerical Problems on single and two blocks on inclined planes	CO 2	L3
16	Numerical Problems on single and two blocks on inclined planes	CO 2	L3
c	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to . . .	-	-
1	Concurrent forces	CO 2	L3
2	Equilibrium and friction	CO 2	L4
d	Review Questions	-	-
-		CO 2	L3
1	State and prove Parallelogram law of forces	CO 2	L3
2	Explain different types of friction	CO 2	L3
3	State and prove Lami'stheorem	CO 2	L3
4	Define i) Angle of friction ii) Angle of Repose	CO 2	L3
5	Define i) Equilibrant ii) Resultant force	CO 2	L3
6	Define friction \& Explain laws of static friction	CO 2	L3
7	Explain with sketch Cone friction	CO 2	L3
8	Determine the reaction at contact points for spheres A \& B as shown in fig Q 2(a). It is given that $W A=1200 N, W B=1500 \mathrm{~N}, \mathrm{dA}=400 \mathrm{~mm}, \mathrm{~dB}=900 \mathrm{~mm}$	CO 2	L3
e	Experiences	-	-
1		CO 2	L2
2			

E1. CIA EXAM - 1

a. Model Question Paper - 1

4	a	Explain with sketch Cone friction	5	CO 1	L 3
	b	State and prove Lami'stheorem	5	CO 1	L 3
	c	Determine the reaction at contact points for spheres A \& B as shown in fig Q 2(a).It is given that WA $=1200 \mathrm{~N}, \mathrm{WB}=1500 \mathrm{~N}, \mathrm{dA}=400 \mathrm{~mm}, \mathrm{~dB}=900 \mathrm{~mm}$	5	CO 1	L 3

b. Assignment -1

Model Assignment Questions										
Crs Code:	18CIV24	Sem:	II	Marks:	30	Time:				
Course:	Elements of Civil Engineering and Mechanics Module : 1, 2									
Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.										
SNo		Assignment Description					Ma	arks	CO	Level
1		Discuss briefly the role of Civil Engineers in the infrastructure development of a country					5	5	CO1	L3
2		Differentiate between flexible and rigid pavement					5	5	CO1	L3
3		Bring out briefly scope of following specialization of civil engineering i) Environmental Engineering ii) Geotechnical Engineering					5	5	CO1	L3
4		Explain briefly the classification of roads.						5	CO1	L3
5		Define force. Explain the classification of force system						5	CO1	L3
6		Explain i)Principle of transmissibility of forces. ii)Principle of physical independence of forces						5	CO1	L3
7		Define couple. Explain characteristics of couple						5	CO1	L3
8		Bring out briefly scope of following specialization of civil engineering i) Structural Engineering i) Transportation Engineering						5	CO1	L3
9		A force of 630 N is acting on a block as shown in the fig-1. Find the i)Horizontal \& vertical components ii)Inclined to the plane and right angles to the plane						5	CO1	L3
10		Replace 1000 N force at point A , which is acting at point B as shown in the fig-2. Also find the moment at A.						5	CO1	L3
11		A square A B C D as forces acting at along its sides as shown in the fig-3. Find the value of P \& Q, if the system reduces the couple. Also find the magnitude of the couple.						5	CO1	L3
12		State and prove Parallelogram law of forces						5	CO1	L3
13		Explain different types of friction						5	CO1	L3
14		State and prove Lami'stheorem						5	CO 2	L3
15		Define i) Angle of friction ii) Angle of Repose						5	CO 2	L3
16		Define i) Equilibrant ii) Resultant force						5	CO 2	L3
17		Define friction \& Explain laws of static friction						5	CO 2	L3
18		Explain with sketch Cone friction						5	CO 2	L3
19		Determine the reaction at contact points for spheres A \& B as shown in fig Q 2(a).It is given that $W A=1200 N, W B=1500 \mathrm{~N}, \mathrm{dA}$ $=400 \mathrm{~mm}, \mathrm{~dB}=900 \mathrm{~mm}$						5	CO 2	L3

D2. TEACHING PLAN - 2

Module - 3

Title:		Appr Time:	10 Hrs
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to	-	Level
	compute the reactive force that develop as result of external load	CO_{3}	L3
	calculate the trusses by method of joints and section	CO_{3}	L3
b	Course Schedule		
Class No	Portion covered per hour	-	-
17	Support Reaction in beams Types of Loads and Supports, statically determinate beams	CO 3	L3
18	Numerical problems on support reactions for statically determinate beams with Point load (Normal and inclined) and	CO3	L3
19	Numerical problems on uniformly distributed and uniformly varying loads and Moments.	CO3	L3
20	Numerical problems on uniformly distributed and uniformly varying loads and Moments.	CO3	L3
21	Types of trusses,	CO_{3}	L3
22	analysis of statically determinate trusses using method of joints and method of section	CO 3	L3
23	analysis of statically determinate trusses using method of joints and method of section	CO3	L3
24	analysis of statically determinate trusses using method of joints and method of section	CO3	L3
		CO_{3}	L3
	Application Areas	CO_{3}	L3
	Support reaction	CO_{3}	L3
c	Analyzing the forces acting on trusses	CO_{3}	-
-		CO_{3}	L2
	Review Questions	CO_{3}	
	Explain different types of statically determinate beams	CO_{3}	
	Explain different types of statically indeterminate beams	CO_{3}	L3
d	What is mean by support reaction	CO_{3}	-
-	Explain different types of supports and loads in the analysis of beam	CO_{3}	-
	Determine the reaction at the supports for the system as shown in fig	CO_{3}	L3
	Find the support reaction for beam loaded as shown in fig	CO_{3}	L3
	Define trusses	CO_{3}	L3
	What are the assumption are made in analyzing the simple truss	CO_{3}	L3
	Explain classification of trusses	CO_{3}	L3
	Differentiate between method of joint and method of section	CO_{3}	L3
	Analysis of statically determinate trusses using method of joints shown in fig	CO_{3}	L3
e	Experiences	-	-
1		CO_{3}	L2,L3
2			

Module - 4

Title:	Data Transmission and Telemetry Measurement of Non - Electrical Quantities	Appr Time:	10 Hrs
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to .	-	Level
1	determine centroid of built up section	CO 4	L3
2	Calculate M.I of full/quadrant circular section	CO 4	
b	Course Schedule		
Class No	Portion covered per hour	-	-
25	Introduction to the concept, centroid of line and area, centroid of basic geometrical figures	CO 4	L3
26	computing centroid for- T, L, I, Z and full/quadrant circular sections and their built up sections.	CO 4	L3
27	computing centroid for- T, L, I, Z and full/quadrant circular sections and their built up sections.	CO 4	L3
28	Numerical problems on centroid for- T, L, I, Z and full/quadrant circular sections and their built up sections.	CO 4	L3
29	ntroduction to the concept, Radius of gyration, Parallel axis theorem, Perpendicular axis theorem,	CO 4	L3
30	Moment of Inertia of basic planar figures, computing moment of Inertia for - T, L, I, Z and full/quadrant circular sections and their built up sections	CO 4	L3
31	Moment of Inertia of basic planar figures, computing moment of Inertia for - T, L, I, Z and full/quadrant circular sections and their built up sections	CO4	L3
32	Moment of Inertia of basic planar figures, computing moment of Inertia for - T, L, I, Z and full/quadrant circular sections and their built up sections	CO 4	L3
c	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to ...	-	-
	Calculating the area and center of gravity of geometric figures	CO_{4}	L3
	Computing the radius of gyration of geometric figures	CO_{4}	L3
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Define centroid	CO_{4}	L3
2	Determine the centroid of quarter circle	CO_{4}	L3
3	Determine the centroid of triangle by method of integration	CO 4	L3
4	Determine the centroid of lamina as shown in fig	CO_{4}	L3
5	Determine the centroid of semi circle by method of integration	CO_{4}	L3
6	Define $2^{\text {nd }}$ moment of force	CO_{4}	L3
7	What is mean by radius of gyration and explain	CO_{4}	L3
8	State and prove parallel axis theorem	CO_{4}	L3
9	State and prove perdendicular axis theorem	CO_{4}	L3
10	Determine the MI of semi circle by method of integration	CO 4	L3
11	Determine the MI of lamina as shown in fig	CO4	L3
12	Determine the centroid of shaded part as shown in fig	CO 4	L3
e	Experiences	-	-
1		CO 4	L2
2			

E2. CIA EXAM - 2

a. Model Question Paper - 2

Crs Code:	18 CIV 24	Sem:	II	Marks:	30	Time	75 minutes

Course: Elements of Civil Engineering and Mechanics

-	-	Note: Answer any 2 questions, each carry equal marks.	Marks	CO	Level
1	a	Explain different types of supports and loads in the analysis of beam	5	CO 4	L3
	b	Determine the reaction at the supports for the system as shown in fig	5	CO 4	L3
2	a	Differentiate between method of joint and method of section	5	CO 4	L3
	b	Analysis of statically determinate trusses using method of joints shown in fig	5	CO 4	L3
3	a	Determine the centroid of quarter circle	5	CO 4	L3
	b	Determine the centroid of lamina as shown in fig	5	CO 4	L3
4	a	Determine the centroid of semi circle by method of integration	5	CO 4	L3
	b	Determine the centroid of shaded part as shown in fig	5	CO 4	L3

b. Assignment - 2

D3. TEACHING PLAN - 3

Module - 5

Title:	Loop and Horn Antenna and Antenna Types	Appr Time:	10 Hrs
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to ...	-	Level
1	illustrate relationship between motion of bodies		
2	describe relationship between plane motion and connected bodies		
b	Course Schedule	-	-
Class No	Portion covered per hour	-	-
33	illustrate relationship between motion of bodies	CO 5	L3
34	describe relationship between plane motion and connected bodies	CO 5	L3
35	illustrate relationship between motion of bodies	CO 5	L3
36	describe relationship between plane motion and connected bodies	CO 5	L3
37	illustrate relationship between motion of bodies	CO 5	L3
38	describe relationship between plane motion and connected bodies	CO 5	L3
39	illustrate relationship between motion of bodies	CO 5	L3
40	describe relationship between plane motion and connected bodies	CO 5	L3
c	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to . . .	-	-
	Kinematics		
	Kinetics		
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Define i) displacement ii) speed iii) uniform velocity iv) average velocity	CO 5	L3
2	State and explain Newtons law of motion	CO 5	L3
3	Derive relationship between linear acceleration and angular acceleration	CO 5	L3
4	Derive relationship between r.p.m and angular velocity	CO 5	L3
5	A wheel is rotating about a fixed axis at 20 r.p.m is uniformly accelerated for 70 sec, during which time it makes 50 revolution. Determine I) angular velocity at the end of this interval and ii) time required for the speed to reach 110 rpm	CO 5	L3
6	A burglar's car starts with an acceleratin of $2 \mathrm{~m} / \mathrm{sec} 2$. A police van came after 10 sec and continued to chase the burglar's car with an uniform velocity of 40 $\mathrm{m} / \mathrm{sec}$. Find the time taken by the police van to overtake the burglar's car.	CO 5	L3
7	Define: i) Instantaneous velocity ii) Uniform acceleration iii) Variable acceleration iv) Retardation	CO 5	L3
8	What is a projectile? Define: i) Angle of projection ii) Horizontal Range iii) Vertical Height iv) Time of fligh	CO 5	L3
9	State and explain D' Alemberts principle	CO 5	L3
10	What is Banking (super elevation) and why it is provided?	CO 5	L3
11	Define:i) Centrifugal Force ii) Centripetal force iii) Centripetal Acceleration	CO 5	L3
12	Instantaneous velocity - Speed - Acceleration - Average acceleration	CO 5	L3
13	Variable acceleration - Acceleration due to gravity - Newton's Laws of Motion.	CO 5	L3
14	Variable acceleration - Acceleration due to gravity - Newton's Laws of Motion.	CO 5	L3
e	Experiences	-	-
1		CO 5	L2
2		CO 5	

E3. CIA EXAM - 3

a. Model Question Paper - 3

b. Assignment - 3

$\mathbf{1 3}$	What is a projectile? Define: i) Angle of projection ii) Horizontal Range iii) Vertical Height iv) Time of fligh	$\mathbf{5}$	CO5	L3
$\mathbf{1 4}$	State and explain D' Alemberts principle	$\mathbf{5}$	$\mathbf{C O 5}$	L3
$\mathbf{1 5}$	A wheel is rotating about a fixed axis at 20 r.p.m is uniformly accelerated for 70 sec, during which time it makes 50 revolution. Determine I) angular velocity at the end of this interval and ii) time required for the speed to reach 110 rpm	$\mathbf{5}$	$\mathbf{C O 5}$	L3
$\mathbf{1 6}$	A burglar's car starts with an acceleratin of $2 \mathrm{~m} /$ sec2. A police van came after 10 sec and continued to chase the burglar's car with an uniform velocity of 40 m/sec. Find the time taken by the police van to overtake the burglar's car.	$\mathbf{5}$	$\mathbf{C O 5}$	L3

F. EXAM PREPARATION

1. University Model Question Paper

4	a	Determine the centroid of semi circle by method of integration	6	CO 4	L3
	b	State and prove parallel axis theorem	6	CO 4	L3
	c	Determine the radius of gyration for the lamina as shown in fig 7	8	CO_{4}	L3
		OR			
	a	Determine the Ml of semi circle by method of integration	6	CO 4	L3
	b	Determine the centroid of I section	6	CO 4	L3
	C	Determine the centroid of shaded part as shown in fig 8	8	CO 4	L3
5	a	State and explain D' Alemberts principle	6	CO 5	L3
	b	What is a projectile? Define: i) Angle of projection ii) Horizontal Range iii) Vertical Height iv) Time of fligh	6	CO 5	L3
	c	A burglar's car starts with an acceleratin of $2 \mathrm{~m} / \mathrm{sec} 2$. A police van came after 10 sec and continued to chase the burglar's car with an uniform velocity of $40 \mathrm{~m} / \mathrm{sec}$. Find the time taken by the police van to overtake the burglar's car.	8	CO 5	L3

2. SEE Important Questions

COURSE PLAN - CAY 2019-20

	5	Determine the centroid of I section	8	CO 4	
	1	State and explain D' Alemberts principle	6	CO 5	
5	2	What is a projectile? Define: i) Angle of projection ii) Horizontal Range iii) Vertical Height iv) Time of fligh	6	CO 5	
	3	What is Banking (super elevation) and why it is provided?	6	CO 5	
	4	Define:i) Centrifugal Force ii) Centripetal force iii) Centripetal Acceleration	6	CO 5	
	5A burglar's car starts with an acceleratin of $2 \mathrm{~m} / \mathrm{sec} 2$. A police van came after 10 sec and continued to chase the burglar's car with an uniform velocity of 40 m/sec. Find the time taken by the police van to overtake the burglar's car.	CO 5			

Course Outcome Computation

Academic Year:

Odd / Even semester

PO Computation

USN-4
USN-5
USN-6
Average CO
Attainment

